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Abstract. It is shown that among four models of the Nijmegen baryon-baryon interaction only model F
—which leads to a repulsive potential felt by the Σ hyperon inside the nucleus— is consistent both with the
analysis of Σ− atoms and of the (K−, π) reactions. The Nijmegen models are used to determine the strong
complex single-particle (s.p.) potential of Σ−, and to calculate the strong-interaction shifts and widths of
the lowest observed levels of Σ− atoms. The results obtained with model F are in best agreement with the
experimental data.

PACS. 13.75.Ev Hyperon-nucleon interactions – 36.10.Gv Mesonic atoms and molecules, hyperonic atoms
and molecules

1 Introduction

Observed properties of Σ− atoms, i.e., strong-interaction
shifts ε and widths Γ of the lowest observed levels, pro-
vide us with valuable information on the strong interac-
tion between Σ− and the nucleons, as well as on the nu-
cleon density distribution in the nucleus of the Σ− atom.
In a recent comprehensive phenomenological analysis of
the existing Σ− data Batty, Friedman, and Gal [1] found
the following striking property of the single-particle (s.p.)
strong-interaction potential of Σ−: it is repulsive inside
the nucleus and attractive outside. The need for the re-
pulsion arose when new data were included into the analy-
sis, namely the results of Powers et al. [2], especially their
precise data on the Σ−Pb atom.

This behavior of Σ− s.p. potential found in the analy-
sis of Σ− atoms is consistent with the analysis of the pion
spectra measured in (K−, π) reactions, which suggests a Σ
s.p. potential repulsive inside nuclei [3,4] (with a substan-
tial positive Lane potential Vτ [5]). This repulsion follows
directly from the observed shift of the pion spectra toward
higher Σ energies compared to the quasi-free spectrum.

The discussion in [3,4] concerns the recent Brookhaven
(K−, π) experiments on 9Be target [6], which were per-
formed with an order-of-magnitude better statistics than
the earlier CERN experiments [7]. Because of poor ac-
curacy of the pion spectra measured in the early exper-
iments, we did not use these spectra in our analysis of
the ΣN interaction. Nevertheless, it remains a valid ob-
servation that no Σ bound states were detected in the
old CERN as well as in the new Brookhaven experiments
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(except for the bound state of 4
ΣHe). This fact is a clear

indication that the the s.p. Σ potential inside nuclei is
repulsive1.

Thus the analysis of both Σ− atoms and the (K−, π)
reactions leads to the conclusion that the Σ s.p. potential
is repulsive inside the nucleus. Obviously, just outside the
nuclear core, it is attractive, since the strong interaction
increases the binding of the Σ− atomic states. These de-
sired properties of the Σ s.p. potential should follow from
a realistic ΣN interaction2. It is our purpose to calculate
the Σ s.p. potential for a variety of ΣN interactions and
in this way to find out which of them is most realistic.

In the present paper we consider the Nijmegen models
of the baryon-baryon interaction: models D [11], F [12],
soft-core (SC) model [13], and the new soft-core (NSC)
model [14]. In our analysis, we apply the effective Σ−N
interaction in nuclear matter, K, obtained within the low-
order Brueckner (LOB) theory with the above interaction
models by Yamamoto, Motoba, Himeno, Ikeda, and Na-
gata [15], and by Rijken, Stoks, and Yamamoto [14] (the
so-called YNG interactions).

The single-particle (s.p.) potential V of the Σ− mov-
ing with momentum �kΣ in nuclear matter with nucleon
density ρ and neutron excess α = (N − Z)/A has the

1 Notice also that a theoretical description of the only Σ
bound state observed in the Brookhaven experiments [8] on
4He target was achieved by Harada [9] with the help of the
phenomenological ΣN interaction leading to the Σ s.p. po-
tential which is repulsive inside the nuclear core and has an
attractive tail.

2 Within the relativistic mean-field approach, these proper-
ties of V have been discussed in [10].
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Fig. 1. The isoscalar Σ potential in nuclear matter V0 as a
function of the nucleon density ρ for kΣ = 0.

form [5]:

VNM(kΣ , ρ, α) = V0(kΣ , ρ) +
1
2
αVτ (kΣ , ρ) . (1)

Here, we ignore terms connected with spin excess, consid-
ered in [16], which are usually negligibly small.

Expressions for the isoscalar potential V0 and for the
Lane potential Vτ in terms of the effective ΣN interaction
K are given in [5]. When we apply the expression for V0

to the YNG effective ΣN interactions, we get the results
shown in fig. 13. (Because of the relatively small magni-
tude of Σ momenta in Σ− atoms, the value kΣ = 0 is used
in fig. 1.) We see that only the model F of the Nijmegen
baryon-baryon interaction leads to repulsive V0 at nucleon
densities ρ � 0.05 fm−3 encountered inside nuclei, and to
attractive V0 at lower densities encountered in the nuclear
surface. All the remaining models lead to attractive V0 at
all densities. This means that only the model F leads to
the Σ s.p. potential which is in qualitative agreement with
the phenomenological analysis [1] of Σ− atoms4 and also
with the pion spectra measured in the (K−, π) reactions.

The important question is whether the model F can
explain quantitatively the measured properties of the Σ−
atoms. It is the purpose of the present paper to show that
this is indeed the case. Using model F, we calculate the
energy shifts ε and widths Γ of the Σ− atomic levels, and
show that they are reasonably close to experimental data.

The YNG ΣN interaction was applied before in the
theory of Σ− atoms by Yamada and Yamamoto [17] in
an attempt to explain the early Σ− atomic data. These
authors calculated the energy shift ε and the width Γ of
the lowest state in 16O, 24Mg, 28Si and 32S Σ− atoms.
They used the Hartree-Fock nuclear wave functions calcu-
lated with the Skyrme interaction. Their F model results
for both ε and Γ are much bigger than our results, and

3 Here we consider the real s.p. potential V and use the real
part of the YNG interactions.

4 The behavior of Vτ is irrelevant here, because the analysis
in [1] was applied also to the Σ− atoms with N = Z in which
Vτ plays a negligible role.

clearly disagree with the experimental data. The reason
might be the nuclear wave functions used in [17] which do
not reproduce the empirical charge distribution.

The paper is organized as follows. Our theoretical
scheme is presented in sect. 2. In sect. 2.1 the expres-
sion for the real s.p. potential of Σ−, V , is derived. In
sect. 2.2, we derive our expression for the Σ− absorptive
s.p. potential W . Our choice of the proton and the neu-
tron densities is discussed in sect. 2.3. Our results for the
energy shifts and widths are presented, compared with
experiment, and discussed in sect. 3. The energy conser-
vation and the action of the exclusion principle in the ΣΛ
conversion process in nuclear matter is outlined in the ap-
pendix.

2 The theoretical scheme

To determine ε and Γ , we solve the Schrödinger equation,
which describes the motion of Σ− in the Σ− atom:

[−(�2/2µΣA)� + VC(r) + V(r)]Ψ = EΨ, (2)

where µΣA = MΣMA/(MΣ + MA) is the Σ−-nucleus (of
mass MA) reduced mass (MΣ is the mass of Σ−), and VC

is the Coulomb interaction between Σ− and the nucleus.
Because of the ΣΛ conversion process Σ−p → Λn, the

strong-interaction potential V is complex, V = V + iW ,
and consequently the eigenvalue E is also complex, with its
imaginary part connected with the width of the level, E =
E−iΓ/2. For the strong-interaction energy shift ε, we have
ε = EC − E, where EC is the pure Coulomb energy, i.e.,
the eigenvalue of eq. (2) without the strong-interaction
potential V. Notice that ε is positive for downward shift
of the level. The measured energy of γ transition to the
level is then increased by ε5.

To calculate the real and absorptive strong-interaction
potentials V and W , we apply the local density approxi-
mation (LDA): the Σ− atom is treated at each point as
Σ− moving in nuclear matter with the local nuclear den-
sity of the Σ− atom.

2.1 Expression for V

Let us consider a Σ− atom with proton and neutron den-
sity distributions ρp(r) and ρn(r), respectively. At any dis-
tance r, we treat the system as nuclear matter with total
nucleon density ρ(r) = ρp(r) + ρn(r) and with neutron
excess α(r) = [ρn(r) − ρp(r)]/ρ(r), and with a Σ− hy-
peron with momentum kΣ ≈ 0. (The last approximation
is justified by the very weak dependence of the Σ s.p. po-
tential in nuclear matter on kΣ found in [5], and by the
relatively small magnitude of Σ momenta in Σ− atoms

5 Strictly speaking, the energy of γ transition is increased by
ε − εu, where εu is the energy shift of the upper, initial state
of the transition. In general, however, εu is negligible small
compared to ε, except maybe in the case of Pb in which we
expect εu � 20 eV.
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(see values of k̄Σ presented in sect. 3).) To get the value
of the Σ− s.p. potential in Σ− atom at a distance r, we
calculate V0,τ (kΣ , ρ(r)) at kΣ = 0 by applying the expres-
sions given in [5] with the YNG effective interactions of
[15] (and [14]). In this way we obtain the isoscalar and the
Lane potentials in Σ− atom at a distance r,

V0(r) = V0(kΣ =0, ρ(r)), Vτ (r) = Vτ (kΣ =0, ρ(r)), (3)

and the total nuclear s.p. Σ− potential,

V (r) = V0(r) +
1
2
α(r)Vτ (r) . (4)

2.2 Expression for W

Here we follow the procedure applied in [18] in explaining
the early data on Σ− atomic widths. A slightly simplified
form of our expression (5) for WNM in terms of the ΣΛ
conversion cross-section was used before in [19]. In the
context of Σ nuclear interaction a semiclassical expression
for W in terms of the ΣΛ conversion cross-section was first
discussed by Gal and Dover [20].

First, let us consider a Σ− hyperon moving with mo-
mentum �kΣ in nuclear matter with total and proton den-
sities ρ, ρp. The width ΓNM of this state is connected with
the absorptive potential WNM = − 1

2ΓNM. By applying the
optical theorem to the Brueckner reaction matrix K —as
was shown in [19] and [18]— one obtains for WNM

WNM(kΣ , ρ, ρp) = −1
2
ν′ρp

�
2

µΣN
〈kΣNQσ〉 , (5)

where 〈 〉 denotes the average value in the Fermi sea, �kΣN

is the Σ−N relative momentum, µΣN is the Σ−N reduced
mass, ν′ is the the ratio of the effective to the real nucleon
mass, Q is the exclusion principle operator (see appendix
for details), and σ is the total cross-section for the ΣΛ
conversion process.

Strictly speaking, the optical theorem leads to expres-
sion (5) in which not σ but σNM, the ΣΛ conversion cross-
section in nuclear matter, appears. It is expressed by the K
matrix in the same way as the free scattering cross-section
is expressed by the scattering matrix. As was discussed
in [19] and [18], the approximation σNM � σ works very
well even at equilibrium density of nuclear matter, and
becomes excellent at low densities relevant for Σ− atoms
because the Brueckner K matrix with decreasing density
approaches the free scattering matrix.

With the absorptive potential W (r) in a Σ− atom with
total and proton densities ρ(r), ρp(r), we proceed similarly
as with V and write

W (r) = WNM(k̄Σ , ρ(r), ρp(r)). (6)

Here, we insert for kΣ in (5) the average momentum of Σ−
in the rest frame of the nuclear medium, k̄Σ , connected
with the average relative Σ−-nucleus momentum kΣA by:
k̄Σ = MΣ k̄ΣA/µΣA. We determine k̄ΣA from

�
2k̄2

ΣA/2µΣA = 〈ψ|T |ψ〉 = Ze2/2an, (7)

where in the last step we calculated 〈ψ|T |ψ〉, the average
kinetic energy of the relative Σ−-nucleus motion, with the
help of the hydrogen-like function ψ of the orbit with prin-
cipal quantum number n (an = (n2/Ze2)�2/µΣA is the
radius of the orbit).

For the total ΣΛ conversion cross-section σ we shall
use the parametrization, adjusted by Gal, Toker, and
Alexander [21] to the Σ− low-energy regime up to 300
MeV/c in the laboratory frame. It has the form

(v/c)σ = (1 + 13v/c)−15.1 fm2, (8)

where v is the relative velocity of Σ− and proton. Expres-
sion (8) gives for (v/c)σ results very close to the results
obtained with model F (see [12]). Consequently, using ex-
pression (5) with vσ given by expression (8) is equivalent
to (and much simpler than) calculating WMN starting with
model F of the hyperon-nucleon interaction. Notice that
at very small nucleon densities, relevant in Σ− atoms,
the K matrix is identical with the free scattering matrix
whose imaginary part —via the optical theorem— is pro-
portional to vσ.

2.3 Proton and neutron density distributions

The proton and neutron density distributions, ρp(r) and
ρn(r) used in our calculation have been obtained from the
isomorphic shell model (ISM).

The ISM model differs from the conventional shell
model by the state dependence of the s.p. Hamiltonian:
the s.p. potential is different in each shell —in each of
them it is assumed to have the shape of a harmonic oscil-
lator [22]. The way of determining the parameters of these
harmonic-oscillator potentials is explained in [23] (see also
[24] and references therein). The important point is that
the ISM model reproduces reasonably well the total nu-
clear binding, and —what is particularly important in our
calculations— the proton and neutron separation energies
and the empirical charge distributions.

The final version of the ISM neutron densities in the
case of 184W and 208Pb are not available, and in these
two cases we assumed that the neutron density has the
same shape as the proton density, i.e., we put ρn(r) =
(N/Z)ρp(r). We checked that this procedure when applied
in cases of all other nuclei considered here would have only
a very small effect on the calculated values of ε.

3 Results and discussion

For the the Coulomb interaction VC in Schrödinger equa-
tion (2), we use the potential produced by a uniform
charge distribution with radius R, which leads to the
same r.m.s. radius 〈r2〉1/2 of the charge distribution, R =√

3/5〈r2〉1/2. For the r.m.s. radii, we use the empirical val-
ues collected in [25]. They are listed in [26] together with
the predictions of the ISM model, which are in good agree-
ment with each other. If we used these predictions instead
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Table 1. Energy shifts ε, εu and widths Γ , Γ u calculated with model F of the ΣN interaction, respectively for the lower and
upper level of the indicated Σ− atoms together with the experimental results. All energies are in eV.

Nucleus n + 1 → n ε εexp Γ Γexp εu Γ u Γ u
exp

12C 4 → 3 8.19 – 22.2 – 0.007 0.011 0.031 ± 0.012a

16O 4 → 3 50.0 320 ± 230b 194.2 – 0.11 0.20 1.0 ± 0.7b

24Mg 5 → 4 32.6 25 ± 40b 50.4 < 70b 0.08 0.10 0.11 ± 0.09b

27Al 5 → 4 67.3 68 ± 28b 113.2 43 ± 75b 0.22 0.28 0.24 ± 0.06b

28Si 5 → 4 139.9 159 ± 36b 242.8 220 ± 110b 0.55 0.70 0.41 ± 0.10b

32S 5 → 4 433.8 360 ± 220b 873.2 870 ± 700b 2.49 3.43 1.5 ± 0.8b

40Ca 6 → 5 27.0 – 42.0 – 0.12 0.15 0.41 ± 0.22a

48Ti 6 → 5 44.9 – 104.0 – 0.30 0.48 0.65 ± 0.42a

138Ba 9 → 8 32.6 – 73.9 – 0.92 1.34 2.9 ± 3.5a

184W 10 → 9 126.7 214 ± 60c 180.5 18 ± 149c 3.75 4.24 2 ± 2c

208Pb 10 → 9 457.4 422 ± 56c 773.4 428 ± 158c 18.9 23.8 17 ± 3c

a Data taken from ref. [27].
b Data taken from ref. [28].
c Data taken from ref. [2].
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Fig. 2. Potentials V and W in 208Pb.

of the empirical values, our results would practically not
change.

Our results for ε and Γ are presented in table 1 to-
gether with the existing experimental data which, how-
ever, are relatively inaccurate. Our results appear rea-
sonably close to the experimental data and indicate the
consistency of model F with the properties of the Σ−
atoms. This leads us to the conclusion that among the Ni-
jmegen baryon-baryon interactions, only model F —i.e.,
the model which leads to the repulsive s.p. potential of Σ−
inside the nucleus— is capable to represent the ΣN inter-
action both in Σ hypernuclear states and in Σ− atoms.

Our present results turn out to be very close to our
previous simple estimates of ε and Γ , obtained in [29] by
applying the first-order perturbation approximation.

Let us make one remark more in favor of model F of
the baryon-baryon interaction: when applied to the Λ +
nuclear matter system it leads to the semiempirical value
of the Λ binding energy, i.e., it solves the so-called Λ
overbinding problem [30].

In fig. 2 we show in the case of Pb the real and ab-
sorptive potentials V and W . Here, W has been calcu-

lated with k̄Σ = 0.40 fm−1, the average Σ− momentum
in the lower (n = 9) state (if we used the average momen-
tum in the upper (n = 10) state, the resulting curve could
hardly be distinguished from the W curve in fig. 2). There
is a considerable difference between the V = V0 + 1

2αVτ

and V0 curves indicating the importance of the Lane po-
tential Vτ . If we neglected the Lane potential Vτ in this
case of the n = 9 state in Pb we would get the result
ε[Vτ = 0] = 713.5 eV which is much bigger than the result
457.4 eV obtained with the full potential V = V0 + 1

2αVτ

and the experimental result 422 ± 56 eV. This demon-
strates that a substantial Lane potential is essential in
the description of Σ− atoms.

Let us consider the problem of the accuracy of our
method of determining the Σ s.p. potential. We use the
real potential V in nuclear matter, which was obtained
in [15] and [14] by applying the LOB approximation which
depends on the energy spectrum of the intermediate states
used in the reaction matrix equation. Fortunately, most
important in Σ− atoms is V at nuclear surface and be-
yond, where the nuclear density is small and where conse-
quently the choice of the energy spectrum in the reaction
matrix equation is less important.

In calculating the Σ s.p. potential, we have applied the
LDA. This approximation is expected to be reasonably
accurate in regions where the nuclear density is varying
slowly. This appears to be the situation in Σ− atoms.
Here, the strong interaction of Σ− occurs predominantly
in the tail of the nuclear density distribution where the
derivative of the density tends to zero. For instance in
the case of the lower n = 9 level in the Σ−Pb atom, the
dominant contribution to 〈Ψ |VΣ |Ψ〉 comes from the region
around r ∼ 9 fm, whereas 〈r2〉1/2

Pb � 5.5 fm.
The accuracy of the LDA may be approximately es-

timated with the help of the improved LDA suggested
in the case of the nucleon s.p. potential a long time ago
by Jeukenne, Lejeune, and Mahaux [31]. If the density-
dependent effective two-body interaction had zero range
then the LDA would be exact. According to the improved
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LDA the effect of the finite range of the ΣN effective in-
teraction may be approximately simulated by replacing V
by Ṽ :

Ṽ (r) = (t
√

π)−3

∫
dr′V (r′) exp(−(r − r′)2t2) , (9)

with t � 1 fm.
As an example let us consider the lower level in the

Σ−Pb atom. When in our calculation we replace V by Ṽ ,
we obtain for the energy shift and width: ε̃ = 510 eV and
Γ̃ = 738.4 eV. A comparison with the results in table 1
shows that the finite range of the effective ΣN interaction
represented by eq. (9) changes ε by (ε̃ − ε)/ε = ∆ε/ε =
11.7% anf Γ by (Γ̃ −Γ )/Γ = ∆Γ/Γ = −4.5%. The finite-
range corrections of this magnitude would certainly not
change the conclusions based on our LDA results.

In calculating the absorptive potential W , we apply
parametrization (8) for the total ΣΛ conversion cross-
section σ. However, the experimental points to which
parametrization (8) is adjusted have big error bars. Fur-
thermore, we need in expression (5) for WMN the cross-
section σ at the average Σ− momentum p̄Σ = �k̄Σ which
varies from 13 MeV/c for the upper level in 12C to 80
MeV/c for the lower level in 208Pb. Now, the experimental
points start at 110 MeV/c, and thus we use parametriza-
tion (8) to extrapolate the values of σ to Σ− momenta
smaller than 110 MeV/c. This leads to a considerable un-
certainty in σ and consequently in our W (which affects
predominantly our results for Γ ). To resolve this uncer-
tainty one needs more low-energy data on the conversion
cross-section.

In our discussion of the properties of Σ− atoms, we
restricted ourselves to model F of the Nijmegen baryon-
baryon interactions, because —as we indicated in sect. 1—
the remaining Nijmegen models lead to V attractive in-
side the nucleus and are inconsistent with the pion spectra
measured in the (K−π) reactions. Nevertheless, it is inter-
esting to see which values of energy shifts and widths in
Σ− atoms would one obtain by applying these remaining
interaction models.

As we see in fig. 1, interaction models D and NSC lead
to an attractive Σ s.p. potential V which at all densities
is more attractive than VF, the s.p. potential in the case of
model F. Consequently, we expect that in the case of mod-
els D and NSC the energy shifts ε should be much bigger
than in the case of model F (and thus also much bigger
than the experimental shifts). Because of the stronger at-
traction, the Σ− hyperon is pulled more into the region
of stronger absorptive potential W , and we expect that in
the case of models D and NSC also the widths Γ should
be much bigger than in the case of model F (and in exper-
iment). The situation with model SC is different —here
at very low densities V is less attractive than VF, and to
see whether model NSC is consistent with the Σ− atomic
data, we simply have to calculate ε and Γ .

Our results obtained for ε and Γ in the Σ−Pb atom
in the case of models D, SC, and NSC are shown in ta-
ble 2 which also contains values of χ2(Pb) calculated for
the 3 experimental Pb data points (for model F, we have

Table 2. Energy shifts ε, εu and widths Γ , Γ u calculated with
the indicated models of the ΣN interaction, respectively for the
lower and upper level of the Σ−Pb atom and the corresponding
values of χ2 for the 3 experimental Pb data (see table 1). All
energies are in eV.

Model ε Γ εu Γ u χ2(Pb)

D 995.4 1250.9 29.7 29.0 148.0

SC 380.0 877.4 12.6 24.7 15.2

NSC 1899.5 2603.8 49.3 37.7 933.2

Table 3. Energy shifts ε, εu and widths Γ , Γ u calculated with
model SC of the ΣN interaction, respectively for the lower and
upper level of the indicated Σ− atoms. All energies are in eV.

Nucleus ε Γ εu Γ u

12C 6.79 24.8 0.004 0.011
16O 63.0 245.2 0.066 0.21
24Mg 10.2 47.4 0.021 0.096
27Al 24.4 109.4 0.064 0.27
28Si 43.6 226.0 0.14 0.66
32S 137.5 814.4 0.67 3.19
40Ca 7.5 39.0 0.028 0.14
48Ti 61.1 117.3 0.39 0.50
138Ba 92.3 91.2 1.85 1.51
184W 87.6 190.4 2.23 4.29
208Pb 380.0 877.4 12.6 24.7

χ2(Pb)F = 10.3). Results for models D and NSC fully
agree with our expectation and we see that these mod-
els are completely inconsistent with the Σ− atomic data.
Also for model SC we have χ2(Pb)SC > χ2(Pb)F, however
the difference between the results obtained with models
SC and F is less drastic. For this reason, in the case of
model SC, we have calculated ε and Γ for all Σ− atoms
considered in the case of model F, and our results are
shown in table 3. For the 23 data points we obtained
χ2

SC = 55.0, whereas with model F we have a smaller value
of χ2

F = 38.1. Thus we conclude, that Σ− atomic data
alone eliminate models D and NSC, and among models F
and SC clearly favor model F.

We consider as the essential conclusion of this work,
that the analysis of both (K−, π) and Σ− atomic data
shows that the potential felt by the Σ hyperon inside the
nucleus is repulsive.
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gramme.
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Appendix A.

The exclusion principle operator Q is a projection oper-
ator onto nucleon states above the Fermi sea in the ΛN
channel. It acts in the final state of the ΣΛ conversion
process in which Σ− with momentum kΣ collides with nu-
cleon (proton) with momentum kN . The collision leads to
the final state: Λ with momentum k′

Λ and nucleon (neu-
tron) with momentum k′

N . Q depends on the total and
relative ΛN momenta, K and k′

ΛN . We approximate Q
by its average over the angle between K and k′

ΛN :

Q(K, k′
ΛN ) = 1, for |k′

ΛN − µΛNK/MΛ| > kF,

= 0, for k′
ΛN + µΛNK/MΛ < kF,

= [(k′
ΛN+µΛNKMΛ)2−k2

F]/(4µΛNKk′
ΛN/MΛ)

otherwise, (A.1)

where µΛN is the ΛN reduced mass. Obviously, we have
kN < kF and k′

N > kF, where kF is the Fermi momentum.
To determine k′

ΛN , we use the conservation of total
momentum,

K = kN + kΣ = k′
N + k′

Λ , (A.2)

and the energy conservation,

eN (kN ) + eΣ(kΣ) + � = eN (k′
N ) + eΛ(k′

Λ) , (A.3)

where eN , eΣ , eΛ are s.p. energies of N , Σ, Λ in nuclear
matter, and � = (MΣ − MΛ)c2.

For all the s.p. energies we assume quadratic momen-
tum dependence, i.e., the effective mass approximation:

eN (kN ) = 1
ν [εN (kN ) − εN (kF)] + eN (kF) , (A.4)

eN (k′
N ) = 1

ν′ [εN (k′
N ) − εN (kF)] + eN (kF) , (A.5)

eΣ(kΣ) = 1
νΣ

εΣ(kΣ) + DΣ , (A.6)

eΛ(k′
Λ) = 1

νΛ
εΛ(k′

Λ) + DΛ , (A.7)

where εX denotes the X kinetic energy (X = N,Σ,Λ).
We identify eN (kF) with the nucleon separation energy

∂ENM/∂A:

eN (kF) = ∂ENM/∂A = ENM/A + 1
3d(ENM/A)/dkF =

εN (kF) + 2bk3
F + 7

3ck4
F , (A.8)

where in the last step we assumed the energy of nuclear
matter per nucleon in the form

ENM/A ≡ f(kF) = 3
5εN (kF) + bk3

F + ck4
F . (A.9)

The requirement that nuclear matter saturates at kF =
kF0 = 1.35 fm−1 with f(kF0) = −15.8 MeV fixes the
values of b = −44.1 MeV fm3 and c = 21.1 MeV fm4

(they lead to a reasonable value of the compressibility,
k2
F0[d

2f/dk2
F]0 = 240 MeV).

With expression (A.8) for eN (kF), eq. (A.4) takes the
form

eN (kN ) = 1
ν εN (kN )+[1− 1

ν ]εN (kF)+2bk3
F+ 7

3ck4
F , (A.10)

and eq. A.5) for eN (k′
N ) takes the same form except that

ν has to be replaced by ν′, and kN by k′
N .

To determine ν we assume that our s.p. energy eN (kN )
leads to the correct energy per nucleon ENM/A:

1
2 〈εN + eN 〉 = f(kF) , (A.11)

and obtain
1/ν = 1 + 5

6ck4
F/εN (kF) . (A.12)

For the dependence of ν′ on ρ, we use the form [32]

1/ν′ = 1 + (1/ν′
0 − 1)ρ/ρ0 , (A.13)

where ν′
0 is the value of ν′ at the equilibrium density ρ0.

We use the value ν′
0 = 0.7 compatible with the empirical

energy dependence of the real part of the nuclear optical
potential [33].

For the hyperon effective mass parameters, νY (Y =
Σ,Λ), we use expression (A.13) with ν′ replaced by νY

and ν′
0 by νY 0 = νY |ρ=ρ0 . Values of νY are not well known.

We assume that νΛ ≡ ν′, which is supported by early
estimates [34] and which simplifies the resulting expression
for k′

ΛN . In our calculations, we assume that also νΣ ≡ ν′.
DΣ in eq. (A.6) is identical with V0(kΣ = 0, ρ) which

—calculated with the YNG interaction— is shown in fig. 1.
In the same way —with the help of the YNG interaction—
we have calculated DΛ.

With the above results for all the s.p. energies, our
final expression for k′

ΛN , which follows from the total mo-
mentum and energy conservation, is

�
2k′2

ΛN

2µΛNν′ =
�

2k2
ΣN

2µΣNν
+

1
2

�
2K2

×
[

1
(MN + MΣ)ν

− 1
(MN + MΛ)ν′

]

+
(

1
νΣ

− 1
ν

)
εΣ(kΣ) +

(
1
ν′ −

1
ν

)
εN (kF)

+DΣ − DΛ + �. (A.14)

With k′
ΛN determined from eq. (A.14), we have calcu-

lated Q, eq. (A.1). With this Q and with ν′ determined
from eq. (A.13), we have calculated WNM, eq. (5), and
W (r), eq. (6). This procedure is important inside nuclei,
where ρ � ρ0. At lower densities ρ, relevant in Σ− atoms,
we have approximately Q � 1 and ν′ � 1, and a much
simpler procedure, applied in [29], appears justified.
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19. J. Da̧browski, J. Rożynek, Phys. Rev. C 23, 1706 (1981).
20. A. Gal, C.B. Dover, Phys. Rev. Lett. 44, 379 (1980).
21. A. Gal, G. Toker, Y. Alexander, Ann. Phys. (N.Y.) 137,

341 (1981).

22. G.S. Anagnostatos, Can. J. Phys. 70, 361 (1992).
23. G.S. Anagnostatos, Int. J. Theor. Phys. 24, 579 (1985).
24. G.S. Anagnostatos, P. Ginis, J. Giapitzakis, Phys. Rev. C

58, 3305 (1998).
25. C.W. De Jager, H. De Vries, C. De Vries, At. Data Nucl.

Data Tables 14, 479 (1974).
26. G.S. Anagnostatos, Int. J. Mod. Phys. E 5, 557 (1996).
27. G. Backenstoss, T. Bunacin, J. Egger, H. Koch, A. Schwit-

ter, L. Tauscher, Z. Phys. A 273, 137 (1975).
28. C.J. Batty, S.F. Biagi, M. Blecher, S.D. Hoath, R.A.J. Rid-

dle, B.L. Roberts, J.D. Davies, G.J. Pyle, G.T.A. Squier,
D.M. Asbury, Phys. Lett. B 74, 27 (1978).
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